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ABSTRACT
Developing algorithms to automatically assess mental
constructs using media data of human behaviors is be-
coming important, especially relevant for mental health
applications. In this work, we focus on a critically preva-
lent neurodevelopment disorder, i.e., the autism spec-
trum disorder (ASD). While researchers have worked on
automatic differentiation of ASD from healthy control
using a variety of behavior modalities, few works have
modeled the severity of ASD behavior symptoms in the
existing clinical practice. Thus, we propose to learn a
converse-level multimodal (speech and text) embedding
derived during a severity assessment interview, i.e., the
Autism Diagnosis Observation Schedule (ADOS), that
considers the intricate interaction behaviors between the
investigator and the participant. Further by fusing two
attentional GRUs with this multimodal embedding, our
approach achieves an averaged regression score of 0.567
on four items of socio-communicative constructs in the
ADOS. Our analysis results suggest that the number of
words uttered by both the investigator and the partici-
pant is a major predictor.

Index Terms— autism, GRU, BERT, ADOS

1. INTRODUCTION

The advancement of technology has enabled the large-
scale collection of media data using commodity devices,
such as audio-video recorders, in settings where human’s
behaviors, e.g., speech and body gestures, can be ex-
pressed spontaneously and naturally in real life. This
provides a new venue for analyzing human behaviors ob-
jectively and in deriving relevant analytics for domain
experts [1]. In fact, developing automated diagnostic al-
gorithms for clinical decision and health condition moni-
toring has already become increasingly popular. For ex-
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ample, Liu and his colleagues proposed a computer-aided
system for automatic cirrhosis diagnosis based on ultra-
sound images, and Lin et al. designed an algorithm for
eyeball region segmentation to assist diagnosis of oph-
thalmic diseases [2, 3]. Also there are studies aimed at
improving personal healthcare based on monitoring peo-
ple’s daily activities using multimodal media data [4, 5].

A recent position paper has laid out the impor-
tance in developing data-driven behavior computing al-
gorithms especially for mental health applications, where
assessing disordered symptoms, while critical but con-
sistently suffers from issues of observational subjectivity
[1, 6]. In this work, we focus on one of the most preva-
lent neurodevelopmental disorders, autism spectrum dis-
order (ASD). One in 160 children were diagnosed with
ASD according to a study done in 2012 [7]. This high
level of prevalence coupling with the fact that ASD is
a heterogeneous neurodevelopmental disorder clinically
characterized by different types of symptoms [8] makes
development of computational assessment for ASD con-
tinues to be challenging yet critical for early detection,
diagnosis and even intervention strategy.

Most of the previous studies concentrate on devel-
oping algorithms for automatic diagnosis of ASD, e.g.,
classification between ASD and typically developing chil-
dren [9, 10] or differentiation between subgroups of ASD
[11, 12]. Several studies have also quantified the atypi-
cality of ASD as expressed in their acoustic, linguistic,
and facial expressions [13, 10]. However, these previous
works do not model the behaviors of ASD within the ex-
isting clinically-validated setting. In this work, our goal
is to develop automatic algorithms in assessing behavior
constructs evaluated in the Autism Diagnostics Observa-
tion Schedule (ADOS) [14]. ADOS has been regarded as
a golden standard severity assessment scoring system for
ASD. Although ADOS helps the medical professionals to
track the efficacy of ASD intervention outcome and gen-
erally use as a clinical assessment for severity, the effort
in training a qualified examiner and the natural subjec-
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tivity in the manual observation make it time-consuming
and create unwanted inconsistency.

In this work, we propose to learn a multimodal
converse-level embedding to predict four different so-
cial constructs rated during an ADOS administration
using an attentional GRU-DNN fusion architecture.
Due to the nature of back-and-forth social interaction
in ADOS, our multimodal embedding, i.e., capturing
both acoustics and lexical modalities, is designed on a
‘converse-level’, i.e., a give-and-take spoken turn seg-
ment between the investigator and the subject, to model
the intricate dependencies between the two interlocu-
tors. Our framework demonstrates the importance of
joint interlocutor modeling when predicting these socio-
communicative scores. Further, our analysis reveals a
distinct question-answering pattern, specifically obvious
in the turn length, for those subjects with high severity
ratings versus low severity ratings.

2. DATABASE

We collected audio-video recordings of ADOS interview
sessions with their associated clinical ratings. In total,
we collected digital data of 88 adolescent ASD patients
at the National Taiwan University Children Hospital1.
The ADOS instrument is a semi-structured assessment
that contains a series of activities with two people in-
volved: the investigator and the participant under as-
sessment. All interactions happened in Mandarin, and
each sentence was segmented and manually transcribed.
The demographics of the participants are listed in Table1

In this study, we selected four ADOS items as an
outcome to be predicted by our model. These items
include: ‘Offers information (OINF)’ and ‘Conversa-
tion (CONV)’ from the communication dimension and
‘Amount of Reciprocal Social Communication (ARSC)’
and ‘Insight (INS)’ from the social reciprocity dimension.
In these ADOS items, a higher score indicates a more se-
vere communication impairment or social deficits. The
distribution of the ADOS codes are listed in Table1. The
four ADOS socio-communicative constructs used in our
study are briefly described in the following.

• OINF: To evaluate if the participant could pro-
vide essential information such as the subject of
the event, the time order of the event, and the lo-
cation of event occurrence.

• CONV: To evaluate if the participant could initiate
and maintain conversations that are sensitive to
social context. Qualified conversations are that the
participant commented on what the investigator
just said and maintained this conversation for at
least four rounds.

1Approved by IRB: REC-10501HE002 and RINC-20140319

Table 1: The rows show the mean and standard deviation
of the participants’ age as well as the scores distribution
of the four ADOS algorithm items used as outcome to
be predicted including OINF, CONV, INS, ARSC.

Age 16.59 /(3.95)
Language Mandarin
ADOS codes 0 (normal) 1 2 3 (severe) Total
OINF 46 29 13 X
CONV 25 43 18 2
INS 8 33 40 7 88
ARSC 45 24 19 X

• ARSC: If qualified conversation (described in
CONV), which is restricted to certain topics, hap-
pened many times, the participant will be coded
with a score of 0.

• INS: To evaluate if the participant could recognize
social relationships. First of all, the investigator
might talk about school, friends, or teachers. Then
the investigator code this item base on how the
participant describe them.

3. METHOD

Our framework involves three parts (Fig 1): first, we split
the interaction into units of ‘converse-level’ segments;
then, we utilize two different embedding approaches for
text (BERT encoding) and speech acoustics (statisti-
cal encoding); finally, these multimodal converse-level
embeddings are fed into gated recurrent unit networks
(GRUs) followed by dense layers with attention mecha-
nism to perform regressions.

3.1. Converse-level Unit Definition
We separated each dialogue into multiple turn-
exchanging blocks. Each block was treated as a simple
unit of turn containing one or many utterances spoken by
only one person, and the next block contained only the
other person’s utterances. A converse-level unit, then,
takes a pair of investigator’s and participant’s turns to
be the basic unit in this work (an example of a converse-
level unit is shown in Fig 1 under ‘Preprocessing’ tag).

3.2. Converse-level Embedding (Lex)
We choose Bidirectional Encoder Representation from
Transformers (BERT) to be our lexical encoder. BERT
is a stack of 12-layers transformer, where the layer at the
end encodes higher level of semantic information [15].
We first take a pre-trained BERT, that is pre-trained on
the setting of bert-based-multilingual-uncased contain-
ing 104 languages. The input to the BERT is either
turn or converse-level sequence of words. The output
vector corresponding to the ‘[CLS]’ token is used as the



Fig. 1. An overview of our method. First (at the top left) we preprocess our data by splitting the corpus into several
turns. Then we use two different methods to encode the acoustic and lexical modalities(at the top right). At the
bottom shows GRUs with an attentive DNN multimodal fusion network used in predicting the ADOS codes.

turn/converse-level representation of lexical embedding,
which is similar to past works [16, 17]. A brief descrip-
tion of the details are described below.

3.2.1. Lexical Embedding using BERT
A special token ‘[CLS]’ is appended in the front of each
input turn (a sequence of words from a single speaker
before floor change), whereas ‘[SEP]’ is appended at the
back. The new word sequence ([CLS]+TurnPart+[SEP])
is then transformed into the initial embedding. The ini-
tial embedding is the summation of three kinds of sim-
ple word embeddings that contain: word index number,
word position, segment id’s. The initial embedding is
further fed into the BERT network to form a word em-
bedding sequence with each word token corresponding to
a BERT vector (dimension 768). Then, the BERT vector
corresponding to the token of ‘[CLS]’ from the last out-
put layer is used as our turn-level lexical embedding (the
segment id’s are set to 0’s for turn-level embeddings).

Furthermore, we extend turn-level embedding to
converse-level embedding by concatenating investiga-
tor’s turn and participant’s turn separated by the
token ‘[SEP]’ (Fig 1 the left box of Converse-level
embedding). This results in the following pat-
tern: [CLS]+TurnInvest+[SEP]+TurnPart+[SEP]. Be-
sides, we indicate the relationship between the two
turns by modifying the segment id. We use a se-
quence of zeros as the investigator’s segment id (SI

Turn

= 0 in Fig 1 ) and a sequence of ones as the par-
ticipant’s segment id (SP

Turn = 1) in order to de-
rive a final converse-level feature BERTIP . On the

contrary, BERTPI puts the two turns in a reverse
order ([CLS]+TurnPart+[SEP]+TurnInvest+[SEP] and
SP
Turn = 0, SI

Turn = 1).
The fine-tuning of the initial BERT into our ADOS

interaction dataset is implemented using the following
procedure. We optimize the output of ‘[CLS]’ token to
correctly recognize consecutive turns within our ADOS
corpus. We finetune the pre-trained BERT to our cor-
pus for 20 epochs. The evaluation accuracy of this fine-
tuning is based on masked LM and next sentence predic-
tion (introduced in [15]) tasks, and this fine-tuned BERT
achieves accuracy of 0.71 and 0.91 respectively.

3.3. Converse-level Embedding (Acous)
We first compute low-level acoustic descriptors (LLDs)
of dimension 52, which contains 12-dimensional Mel-
Frequency Cepstral Coefficients(MFCCs), 7 dimensional
Line Spectral Pairs (LSPs), intensity, loudness, F0, F0
envelope, zero-crossing rate, voice probability and their
first-order derivatives using the OPENSMILE toolbox
[18]. The LLD’s are derived within each 60ms window
and the step size is set to be 10 ms. We further ap-
ply session-wise Z-score normalization on these LLDs for
each ADOS interaction sample.

These acoustic features are then split into converse-
level blocks to align with the converse-level lexical fea-
tures described in section.3.2. Within each turn, 15 di-
mensional functional encoding that includes: maximum,
minimum, mean, median, standard deviation, 1st per-
centile, 99th percentile, the difference between 1st and
99th percentile, skewness, kurtosis, relative position of



Table 2: Spearman ranking correlation results between the model prediction and the true scores. The rows are
four different tasks ’OINF’,CONV’, ‘ARSC’,‘INS’ with the average correlation obtained, and the columns are four
different levels of embeddings. The subscript shows the input features of that particular level of embedding.

SA SW2V QT TA TW2V QT TW2V QT+A TBERT+A JBERT+A CBERT+A

OINF 0.004 0.460 0.105 0.519 0.556 0.511 0.578 0.582
CONV -0.048 0.493 0.170 0.557 0.599 0.531 0.580 0.519
INS 0.011 0.428 0.019 0.304 0.293 0.369 0.226 0.523
ARSC -0.037 0.492 0.188 0.530 0.535 0.594 0.571 0.645
AVERAGE -0.018 0.468 0.121 0.478 0.496 0.501 0.489 0.567

minimum value, relative position of maximum position,
the first and third quartiles, and interquartile range (see
the right box of Converse-level embedding in Fig 1). Fi-
nally, the turn-level acoustic features (780 dimensions)
from the investigator and the participant are concate-
nated to form the converse-level acoustic embedding.

3.4. GRU with Attentive DNN Fusion Network
After obtaining converse-level lexical embedding and
acoustic features, we further train two modality-specific
GRU networks that are further fused using a DNN to
perform ADOS scores regressions. GRU networks are
defined as below:

rt = σ(Wrxt−1 + Urxt) (1)

zt = σ(Wzxt−1 + Uzxt) (2)
ŝt = tanh(W (rt ◦ st−1) + Uxt) (3)
st = (zt ◦ st−1) + (1− zt) ◦ ŝt (4)

where rt, zt, ŝt, st are reset gate, update gate, candidate
current state, current state, and the operator ◦ repre-
sents Hadamard product. Referring to eq.3 and eq.4,
the candidate current state (ŝt) is determined by the
current input xt and a proportion of previous state con-
trolled by reset gate(rt). Finally, the current state (st) is
determined by linear combination of previous and can-
didate current state weighted by the update gate (zt).
xt indicates either acoustic or lexical converse-level em-
bedding. We take the outputs of the two GRU networks
to perform fusion with a dense layer. We further apply
attention mechanism in this fusion dense layer:

ht = Wd[s
Acous
t ; sBert

t ] + bd (5)
ŷi = ΣTi

j=1αijhj (6)

αij =
exp(eij)

ΣTi
j=1exp(eij)

(7)

eij = Waht + ba (8)
The outputs sAcous

t and sBERT
t are concatenated and

passed into a dense layer (eq.5). The output of the
dense layer ht is multiplied by attention weight αij and

summed up to be the final output ŷi, where Ti is the to-
tal number of turns of one session. The attention layer
is implemented using a dense layer (eq.8) with a softmax
layer (eq.7).

4. EXPERIMENTS

In this work, we compared different levels (sentence,
turn, joint, converse) of embeddings. Sentence-level em-
bedding means the unit of a time step is a sentence
(eg. sentenceInvest1 ,sentenceInvest2 refer to Fig 1) in-
stead of a turn. Turn-level embedding treats each turn
block as a single unit. Joint-level embedding is im-
plemented by simple feature concatenation of investi-
gator’s turn and participant’s turn. The basic unit of
joint-level embedding is the same as converse-level em-
bedding. Finally, converse-level embedding is our pro-
posed framework. We also compared BERT to Quick
Thought vector[19] proposed in 2018 as the lexical en-
coder. Our Quick Thought comparison model is pre-
trained using the following steps: we first pre-trained
the Word2Vec encoder and Quick Thought encoder us-
ing Chinese Wikipedia, and fine-tune both of them onto
our ADOS corpus. The description of the comparison
models (refer to the columns in Table2) are listed below:

• SA: Sentence-level acoustic feature baseline.
• SW2V QT : Sentence-level Word2Vec with Quick

Thought embedding baseline.
• TA: Turn-level acoustic feature baseline.
• TW2V QT : Turn-level Word2Vec with Quick

Thought embedding baseline.
• TW2V QT+A: Turn-level fusion of acoustic and

Word2Vec with Quick Thought embedding.
• TBERT+A: Turn-level fusion of acoustic and BERT

embedding.
• JBERT+A: Joint-level fusion of acoustic and BERT

embedding.
• CBERT+A: Proposed Converse-level fusion of

acoustic and BERT embedding.
A five fold cross-validation scheme using metric of spear-
man correlation is used for evaluation. We conduct each



Table 3: The table shows the average turn length of the lowest, middle, highest groups. We reported the average
turn lengths of both the participant and the investigator separately in each group.

Analysis of Turn Length
OINF CONV INS ARSC
Investigator Participant Investigator Participant Investigator Participant Investigator Participant

Lowest 7.909 15.341 8.705 15.409 10.409 15.227 9.250 15.795
Middle 12.068 9.909 12.977 9.795 13.295 9.318 11.432 9.818
Highest 19.273 4.932 16.659 5.091 14.318 6.227 19.205 4.659

experiment five times and report the average correlation
in Table 2. The hyperparameters of the network are
listed below: all of the GRU networks contain 1 layer
GRU cell. The dropout rate and the hidden nodes are
selected to be 30% and 8 respectively. The model is opti-
mized by minimizing MSE loss using stochastic gradient
descent with the optimizer, ADAMW [20, 21].

4.1. Results

We first compare the turn-level embedding to sentence-
level embedding (the left most Table 2). The average
scores of the turn-level embedding models are better
than the sentence-level embedding models, and the re-
sults of acoustic modality only (SA, TA) are worse than
the lexical modality (SW2V QT , TW2V QT ). We also ob-
serve that results of fusing acoustic and lexical features
at turn-level (TW2V QT+A) already improves the average
spearman correlations across the four codes from 0.478
to 0.496. Furthermore, by replacing Quick Thought
vector with BERT in the lexical modality, the corre-
lation improves to 0.501. Finally, to model the inter-
action of both interlocutor, we implemented Joint-level
and Converse-level fusion models. While Joint-level fu-
sion model is not better than turn-level fusion model,
our proposed Converse-level fusion model obtained the
best average score suggesting the importance of joint in-
terlocutor modeling, specifically using the GRUs with
attentive dense fusion layer.

Our proposed converse-level fusion model obtains re-
sults of 0.582, 0.519, 0.523, 0.645 (spearman correlation)
when regressing ADOS codes of OINF, CONV, INS,
ARSC. Out of these four social communicative ratings,
we obtain the best accuracy when using converse-level
model in all of them except for CONV. CONV code is
coded on whether the participating subject could initi-
ate or try to maintain a conversation. Turn-level has
the highest accuracy may indicate that in this scenario,
either the participant’s or the investigator’s turns by
themselves already provide adequate information with-
out the need of sophisticated modeling such as our pro-
posed converse-level fusion in attempting to capture the
social exchange phenomenon.

4.2. Analysis and Discussion
We further conduct a turn length analysis to demon-
strate the insights derived from using our proposed
framework. One of the key intuitive indicators in pre-
dicting the final score that we have identified is that the
number of words used in each turn (referred to as turn
length in this paper). We analyze the turn length as a
function of the low, mid, high three scoring groups for
each ADOS codes used in this paper. The three groups
are defined with the following criteria: ‘Lowest’ means
the samples of the lowest 25% regressed values (closer to
normal); ‘Highest’ means the highest 25% regressed val-
ues (higher severity); ‘Middle’ indicates the subgroups in
between.

4.3. Analysis of Turn Length
The results are summarized in Table 3. The partici-
pant columns show an obvious pattern that the lowest
group has the highest turn length value. It is quite intu-
itive that the lower the social-communicative symptom
severity the more words that the participant would say
to engage in smooth conversation with the investigator.
Interestingly, we see a clear opposite trend for the in-
vestigator. It demonstrates an interesting dependency
between the two interlocutors that is conditioned on the
severity of the subject, i.e., the better-abled participant
leads to a situation where the investigator says less, and
the more severely impaired subjects speaks less leading
to a situation where the investigator needs to say more.
This phenomenon has also been identified in the ADOS
administrated in English according to a previous study
by Bone et al.[6]. While we identify that word length
as one of the key intuitive indicators in analyzing the
difference between the three scoring subgroups, many
of these are also encoded in the semantics (what) and
style (how), that are further captured with our proposed
converse-level BERT model fused with acoustic descrip-
tors.

4.4. Conclusions
In this work, we propose a converse-level multimodal
(speech and text) embedding with a GRU-DNN atten-
tion networks to automatically regress on four ADOS
items (socio-communication related measure, i.e., OINF,



CONV, INS, ARSC). Our proposed model obtains spear-
man correlation of 0.582, 0.519, 0.523, 0.645 for the tasks
OINF, CONV, INS, ARSC outperforming a variety of
baseline models. Finally, our analysis implies that longer
participant’s turn length and shorter investigator’s turn
length seems more likely to be correlated to a lower sever-
ity symptoms. More detailed analysis, for example, the
exact semantic patterns and the acoustic manifestation,
which are two additional key components modeled in our
framework will be included in our future work.
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